
AD-RIOS 161 EGL: THE LANGUAGE AND ITS IMPLENENTATION(U) NORTH /
CAROLINA UNIY AT CHAPEL HILL DEPT OF COMPUTER SCIENCE

- JAYARANAN ET AL. 1986 NOSS4-S6-K-S666
UNC LRSSIFIEDDF/ 2/5 NL

EohhohhEEEEshE

11161 1. 2 2
LAD 136 2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963 A

FILE COPY "

(EqL: the language and its hnplementationt

00 Bharat Jayaraman
00 Gopal Gupta

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

betract

... EIL is a general-purpose language that combines the capabilities of functional and
logic programming languages. A program in EqL consists of a collection of conditional,
patternAirected rules, where the conditions are expressed as a conjunction of equations,
and the patterns are terms built up of data-constructors and basic values. The computa-
tional paradigm in EqL is equation solving. -a'fhis paper we'describe~qL informally, by
first presenting several examples illustrating the various features of the language: nondeter-
minism, logical variables, deferred evaluation of primitives, and user-defined constructors.
This paper also describes the novel aspects of a sequential implementation for EqL: compile-
time flattening and re'ordering of equations; and run-time equation-delaying, last-equation
optimization, and ruleindexing.

DTIC
E L.t 17C _

A

71his doclunerl as

for lea as bee" OPproved
ho SUnlimited *it

t This research is supported by grant DCR603609 from the National Science Foundation and contract

N 00014-86-K-0680 from the Office of Naval Research.

1 1 1O 069

I. Introduction

Amongst a number of recent proposals for integrating functional and logic programming

[RS82, D83, F85, GM84, DP85, YS86J, one promising approach is equational programming

[F85, DP85, YS86]. In our recent formulation of equational programming [JS86, JG87,

J87], a program is a collection of conditional rewrite rules, where the conditions are ex-

pressed as a set of equations, and the top-level goal to be solved is also a set of equations.
We have shown that this framework has the capabilities of first-order functional and Horn

logic programming, with the following properties:

" pattern-directed rules;

" functional, rather than relational, notation;

" declarative semantics based on complete set of aolutions;

* operational semantics based on object refinement;

" potential for parallel execution.

The computational paradigm underlying our class of equational languages is equation
solution. This paradigm subsumes expression evaluation in a functional language because

an expression e to be evaluated is simply viewed as an equation v = e, where V is some

distinct variable. It also subsumes goal solution in logic languages because a goal g to be
solved can also be viewed as an equation, namely, g = true. Because solutions are not
necessarily unique, the declarative semantics for equations is expressed as the complete set
of solutions. Our semantics differs from related approaches in that it is domain-theoretic,

rather than based on equational logic 1F85, 085, YS86]. Thus constructors and function

symbols are sharply distinguished in our language, and the denotation of an expression is

a set of terms over the constructors. Object refinement is a sound and complete operational
strategy for computing solutions that are at least as general as the complete set of solutions

JS861.

In this paper, we describe a concrete realization of our equational programming

paradigm via a language called EqL, for Equational Language. We illustrate with ex-

amples the major capabilities of EqL: nondeterminism, logical variables, deferred evalua-

tion of primitives, and user-defined constructors. We also describe the salient features of

a sequential implementation of EqL, written in C. The current implementation has two
phases:

1. compilation, in which the source code is transformed by flattening and reordering

equations, in accordance with their semantics; and

2. interpretation, in which equations are solved via a depth-first backtracking search
using a five-stack execution model. The novel aspects of this model are (i) the separation of

2

the conventional recursion stack into two parts: the control stack and the variable stack, and
(ii) the use of equation-delay and equation-trail stacks for deferred (but not lazy [HM76])
evaluation of certain primitives. In addition, a trail stack is used for recording which
variables must be undone upon backtracking, as in Prolog implementations fWPP77.

Data objects are stored in a heap, as in conventional language implementations. The
data representation is based on Boyer and Moore's structure sharing [BM72], a technique
for minimizing copying when creating structured objects. The separation of control in-
formation from variable information facilitates early reclamation of the control frame. It
also enables Last-Equation Optimization (LEO), which is similar to Tail-Recursion Opti-
mization (TRO) in functional language implementations. LEO actually is more general
than TRO because it is applicable to certain non-tail-recursive definitions, such as LISP's
append, in which the last call is embedded inside a data-constructor at the outermost level.

The rest of this paper is organized as follows: section II describes the data objects of
EqL and the informal meaning of EqL rules. Section III briefly describes interaction with
the EqL interpreter, and section IV presents examples of EqL programs for functional
and logic programming. Sections IV and V describe respectively the compilation and
interpretation interpreter of EqL. Section VI presents conclusions and further comparisons
with related work.

II. EqL Language Features

In this section we describe the data objects in EqL and the informal meaning of rules.

ILl. Data Objects

The data objects in EqL are defined below:

(i) Numbers: The current implementation of EqL provides only integers, e.g. 10. 207.
0. -11. -3999. etc.

(ii) Boolean.: true. false.

(iii) Atom:. Any identifier beginning with an upper-case letter or any sequence of charac-
ters enclosed within single quotes, e.g. Apple. EqL. 'also an atom', etc.

(iv) Variables: Normally begin with a lower-case letter, e.g. x. y. tree, pl. qi, etc.
"Anonymous" variables begin with the underscore symbol, and serve as place holders
in data structures, e.g. cons (h. dontcare). The underscore symbol by itself is also
an anonymous variable. ' -

(v) Structures: In the current implementation of EqL, there are two built-in structured .. .

data objects: trees and strings. User-defined structures may be specified using the
constructor declaration, explained later. We explain trees and strings below.

3

. ..

We use the word term to refer to any data object of EqL that is built up from the above en-
tities. We sometimes use the word tructured term to refer to a term that has a constructor
at the outermost level.

As in LISP, the built-in constructor cons (x. y) defines a binary tree, and the op-
erations car(t) and cdr(t) access the left- and right-subtree of a tree t respectively.
Examples:

cons(10. 20).

cons(1O. cons(20,30)).
cons(cons(a.10). cons(B, 20))

In the third example, note that a is a variable, but B is a atom.

Because list-processing is a common application of functional and logic languages,
EqL provides a special notation for list. Similar to lists in LISP and Prolog [CM81J, EqL
lists are a special case of trees; they correspond to trees which "slope to the right" and
end with the special symbol UJ. The following examples illustrate the connection between
lists and trees:

List Notation Tree Notation
[1.2.3] con&(.cons(2.cons(3,J)))
[[[I]]] cons(cons(cons(I Jfl).[])

Similar to PROLOG, the notation

[xl y]

is used to stand for cons (x.y).

String constants are defined by a sequence of characters enclosed within a pair of
double-quotes, e.g. "abc". "123". "longer string", etc. The empty string is "". Anal-
ogous to the above notation for lists, we use

[x: yI

to refer to the string obtained by prepending the one-character atom denoted by variable
x in front of string denoted by y. For example, ['a' : "bc"] is the string "abc", and
['a' : ""] is the string "a".

H.2. Rules

We illustrate program rules through examples. Below is a program to find the maximum
depth of a binary tree of integers.

depth(x) -> 0 where numberp(x) - true

4

depth([left I right]) => if dl > dr then dl+1 else dr+1

where

dl - depth(left);

dr - depth(right).

Program 1.1: Maximum depth of a binary tree

The above program has two rules, which define the two cases for the depth function: the
case for a leaf (an integer), and the case for a nonleaf (a tree built up from cons). In

general, an EqL rule may take one of two forms:

1. f(pattern) => ezpresion.

2. f(patterns)=> ezpreuion where equations.

We explain each component of a rule below:

(i) Pattern. The word pattern is a synonym for term, which was defined in the previous
section. Two or more patterns in a sequence are separated by commas, e.g.,

fUxi I yl]. [x2 : y2]. z) => ...

Zero-argument operations are permitted, and are defined by

f() -> ...

(ii) Ezpreuions. Every primitive or user-defined operation in EqL, except if-then-else,
is 8trict in all of its arguments, i.e., its result is undefined if any of its arguments is
undefined. The if-then-else is strict only in its first argument. The different kinds of
expressions in the current implementation are listed below:

a. Term.: Every term is also an expression.

b. Primitive Operatorr. There are three kinds of primitive operators: arithmetic,

relational, and boolean. These operators are summarized below:

Arithmetic: +. -. *. div. mod, and unary -. The binary operators + and -
have lower precedence than * and div, which in turn have lower precedence than div
and mod. Unary - has the highest precedence. The operator div returns the integer
quotient. All binary operators are left associative. In addition, the function abs(x)
returns the absolute value of x.

Relational: <. >. <-, and >-. The equality symbol - is reserved for defin-
ing equations. The function eq(x.y) maps identical atoms, numbers, and booleans

to true; otherwise it returns false. The functions lessp(x.y), greaterp(x.y),
lesseq(x.y), and greatereq(x.y) may be used in place of <. >. <-, and >- re-

spectively.

5

Boolean: and. or and not. The operator not has precedence over and, which
has precedence over or. The following domain predicates are provided in the language.

numberp(x) : true if x is a number;, false otherwise.
boolean(x) : true if x is a boolean; false otherwise.
atoM(x) : numberp(x) or boolean(x).
null(x) : eq(x. [).

c. If than else:

if boolean-ezpr then ezprl else ezpri

Both the then- and the else-part may have equations associated with them. Thus,

for example,

(ezprl where equation.)

may be used in place of ezprl above. We explain equationm further below.

d. Application:

f (arguments)

where f is the name of some user-defined function and argument8 is a sequence of zero
or more expressions separated by commas.

EqL also supports I/O operations, but we do not discuss them in this paper. A complete
description of I/O operations may be found in [(JG871.

(iMi) Equation. An equation is of the form

term = ezpre.ion or ezpresion = term.

Although permitted by our implementation, an equation expression, = expression2 of-
fers no extra power since it is equivalent to the pair of equations: v= ezpreasion1 ; v =

ezpresiong, where v is a distinct variable. Actually, it suffices to permit equations of the
form v = ezpression, but permitting a term in place of variable v often leads to fewer
intermediate variables in the source program, and hence clearer definitions.

Two or more equations in a sequence are separated by semi-colons. Because the
interpreter is sequential, it solves equations in the sequence presented. In the equation-
solving rules described informally below, we refer to expressions being 'evaluated', but the
reader should note that an expression c is evaluated by solving an equation v = e. We
assume henceforth that an equation is of the form term = expres.ion; the symmetric case
is treated similarly. There are four cases for an equation, corresponding to the four forms
of an expreuion:

1. term, = term2 . This is solved by syntactic unification. Failure to unify initiates
backtracking.

6

2. term = f(el,... ,e,), where each ej is an ezpresw'on, and f is a user-defined operation,

whose first rule is

ft t) => enpremion where equationa.

The equation reduces to the following sequence of equations, where each vi is a distinct

variable:

v= el; ... ;v,, = en; Vi = ti; ... ; vn = t; equationx; term = ezpreaeion.

That is, the expressions el ... e,, are first evaluated and their results then unified with

tj ... t, respectively; the equationa in the body of f are then solved; and finally, the

ezpre"ion in the body of f is evaluated and unified with term similarly. If, at any

stage, unification fails backtracking occurs to the dynamically most recent operation

having an untried rule. Note that the evaluation order is essentially call-by-value.
Also, the implementation ensures that ther computed value for each ei above is not
re-computed when an alternative rule for f is attempted upon backtracking.

3. term = if p then e1 else e2. If expression p evaluates to a boolean, the equation

term = el or term = e2 is solved. If expression p evaluates to a number or structured
term, the equation fails and initiates backtracking. If p evaluates to an unbound

variable, say x, two nondeterministic paths arise: (1) the equation term = el is to be
solved, where x +- true; and (2) the equation term = e2 is to be solved, where x 4-

false. These two paths are tried out sequentially, with backtracking. Note that if eI
or e2 were accompanied by equations, these equations would be solved before solving

term = el or term = e2.

4. term = primitive. The arguments of the primitive operator are first evaluated. If
their results are not of the proper type, the equation fails and initiates backtracking;
otherwise, the operator is applied to the arguments to produce a result, which is then

unified with term. If the arguments reduce to unbound variables, the equation is
deferred, or delayed, until all unbound variables are fully defined.

All these cases are clarified through examples in the next two sections.

I. The EqL Interpreter

In this section, we give a brief account of the EqL interpreter implemented under Unix.

More details may be obtained from [JG87].

The top-level query of an EqL program is either an expression or an equation or a set
of equations, terminated by a period. A top-level expression e is actually treated internally

as an equation, - = e, where - is the anonymous variable.

A typical session in EqL is a "conversation" between the user and the interpreter.

The interpreter is first invoked by the command

7

% eql

where we assume % is the Unix command-level prompt. The interpreter would respond as
follows:

EqL Version 1.0

eql>

Often, a set of EqL rules are kept in a file, which can be read in by a consult operation
(as in C-Prolog). For example, if depth is the name of a Unix file containing the two rules
for the depth function, it can be read in as follows.

eql> consult('depth').
EqL will respond with

true

eql>

Now, the depth function can be invoked on some input tree, e.g., [10 I [20 I [30 I
40]]], as follows:

eql> depth([10 I [20 1 [30 1 403]).

The interpreter would respond with

3

eql>

Note that the top-level query can, in general, be a sequence of equations. For example,
the following goal is equivalent to depth([1W 1 [20 I [30 I 40]]]):

eql> x - depth([10 1 [20 1 [30 1 40]]]).

The interpreter's response to this goal would be:

x - 3

eql>

Actually, the top-level query depth((10 1 [20 1 [30 40]]]) would in fact be inter-
nally converted into an equation, - depth([10 1 [20 1 [30 40]]]).

If the EqL interpreter finds that it cannot solve the top-level query, it would respond with
the message,

no solution

This might happen, for example, when the top-level query is:

eql> depth((]).

because [I is not an atom. To account for this case, an explicit rule,

8

de~pth([] -> 0 .

can be provided.

IH.2. Obtaining Multiple Solutions

Consider the following definition for the familiar append function of LISP, for non-destructively
concatenating two lists:

append([]. x) -> x.
append([htt], y) -> [h I append(t.y)].

Program III.: List append

For example, the result of the query

eqi> append([1. 2]. [3. 4]).

would be the list

(1. 2, 3. 4].

It is just as easy to find out the lists x and y such that when appended together will yield
the list [1.2.3.4]. This query can be expressed as follows:

eql> append(x.y) - [1.2.3.4].

The interpreter will respond with:

x - 1]
y - [1. 2. 3. 4]

Upon typing a semi-colon at the end of the second line above, the interpreter will respond
with the second solution:

K - (1]

y I [2. 3. 4]

Typing a carriage return instead of a semi-colon will cause the interpreter to discard
remaining solutions and return with the

eql>

prompt. All five solutions to the above query can be inspected by typing a semi-colon at
the end of each preceding solution.

Thus, the interpreter for EqL, like a Prolog interpreter, explores alternative solutions to a
query by depth-first search with backtracking.

IV. Programming in EqL

9

We now illustrate through examples the various features of EqL: non-determinism, delayed

evaluation of primitives, logical variables, and user-defined constructors.

IV.l. Nondeterminism

We already saw in the previous section that multiple solutions may exist for an equation.

We illustrate nondeterminism in EqL further through two examples: the family database,

and the N Queens problem-

IV.I.. Family Database

Shown below are four operations: f (x), which returns the father of some person x; z(x),

which returns the mother of x; p(x), which returns the parent of x; and gp(x), which

returns the grand-parent of x.

f(Bob) > Gary.

z(Bob) => Mary.

f(Ann) => Gary.

z(Ann) > Mary.
f(Gary) -> Joe.
z(Gary) > Jane.

f(Mary) => Steve.

m(Mary) > Sue.

p(x) => f(x).

p(x) => M(x).
gp(x) -> p(p(x)).

Program IV.1: Family Relationships

The operation p(x) is nondeterministic because there are two rules for operation p. This

reflects the fact that a person in this database has more than one parent-two to be

precise. Because gp(x) is defined in terms of p(x), it is easy to see that gp(x) is also

nondeterministic. The grand-parent of some person, say Bob, could be found by:

eql> gp(Bob).

The first answer produced by the interpreter would be Joe, because p(Bob) would first

return Gary, and p(Gary) would first return Joe. Upon requesting the next answer (by
typing semi-colon), the interpreter would backtrack to the latest point where another

choice is possible. Thus p(Gary) is recomputed, via a(x), to be Jane, which becomes the

next answer to the top-level query. The other answers, Steve and Sue, are determined
similarly.

10

The grand-children of some person, say Joe, could be found with query such as:

eql> gp(x) - Joe.

IV.1.2. N Queens Problem

We now present a more complex example of nondeterministic programming. The problem
is to place N queens on an N by N chess board in such a way that no two queens are
attacking one another. A simple approach to this problem is to place queens on successive
columns so that each new queen placed is not attacked by any queen in the preceding
columns. If a queen cannot be placed on a given column, we go back to the preceding
column to see if the queen there has another "safe" position. If there are no safe positions
remaining on that column, we back up to the preceding column, and so on. A solution is
found if we can thus place queens on all N columns. We have exhausted all solutions if we
attempt to go back from the first column to the 0-th column.

Below is an EqL program for specifying the desired search:

queens(n) -> solve (1. n).
solve(col. safelist, n) => if eq(col.n1) then safelist

else place ([col I row(n)]. safelist. n).
place(q. safelist, n) -> solve (col1. (qisafelist]. n)

where q - [colirow];
safe(safelist, q) = true.

safe([].q) -> true.

safe([qi I t]. q) -> safe(t.q) where threatened(q. qI) = false.
threatened([cilrl]. [c2lr2]) -> eq(rI.r2) or eq(abs(rI-r2), abs(cl-c2)).
row(n) -> n where greaterp(n. 0) - true.

row(n) -> row(n-i) where greaterp(n. 0) = true.

Program IV.2: N Queens Problem

The nondeterminism in the above program lies in the operation row(n), which generates
the sequence of integers n, n-1, ..., 1, one at a time. This provides a way for stepping
through the rows in any particular column. This example also shows the clarity of function
composition and if then else; a comparable Prolog definition must rely on the "cut"
and other extra-logical features for arithmetic to specify the desired solution.

rV.2. Delayed Evaluation of Primitives

An interesting aspect of the execution of an EqL program is the way primitive operators are
handled. Basically, when a primitive operation, such as . atom(x). >, etc., has all of its
arguments defined, it is simplified to produce a result. However, when its arguments are not

11

sufficiently defined when first encountered, it will be deferred until sufficient information
is available to simplify it. This delayed evaluation has many uses, as we will illustrate in
this section. A similar form of delaying has also been recently used in the CLP language
[JL871.

IV.2.1. Simulating Sets with Lists

The following rules define the familiar LISP operation member, which tests if an element
x is a member of a list.

member(U, x) > false.
member((xlt].x) > true.
member([yt].x) => member(t.x) where eq(x.y) - false.

Program IV.3 : List Membership

It is easy to see that member will correctly check if an element, say 3, is a member
of some list, say, [1.2.3.4.5]. Member could just as easily be used to enumerate the
elements of a list, using a goal such as

eql> member([I.2.3.4.5]. z) = true.

which would return 1. 2. 3. 4. and 5 as the value for z, one at a time. The goal below,
however, illustrates a different outcome:

eql> ember(E.2.3.4.5]. z) - false.

Here, the first rule of member fails because [I does not match [1.2.3.4.5]. The second
rule initially succeeds in unifying the goal arguments with its patterns, but its result,

true, fails to match false in the top-level query. Thus the third rule of member is taken.
When the operation eq(x,y) is encountered, note that y has the value I but x is unbound.
The EqL interpreter therefore defers this equation (by moving it to a global stack of such
deferred equations), and proceeds with the recursive call on member. Each succeeding call
on member results in one new deferred equation, eq(z.2) - false, eq(z. 3) = false,
etc. Finally, the first argument to member is [], and the first rule succeeds, and all

equations are solved, except for the deferred equations. Because z is still unbound, the
EqL interpreter responds as follows:

Input equations not fully constrained

z=_16

eql>

The binding of z to a number preceded by the under-score symbol indicates that z is un-
bound. Although the above behavior might not seem useful at first, consider the following
natural definition of set difference (in terms of member).

12

diff(x.y) -> d where member(y. d) = false;

member(x, d) = true.

Program IV.4 : Set Difference

The above rule states that the difference of two sets x and y (represented as lists) consists

of elements d such that d is not a member of y and d is member of x. For example, the

goal

eql> diff([l.2.3.4.5]. [1.3.5.6.7]).
will return 2 and 4 as answers, one at a time.

EqL is able to find these answers as follows. At the end of solving the first equation,
member(y. d) = false, where y - [1.3.56.8,7], there will be five deferred equations:

eq(d.1) = false; eq(d.3) = false; ... ; eq(d.7) = false.

When attempting solve member(x. d) - true, with x - [1.2.3.4.5], the binding of d
to the values 1. 3. or 5 will cause one of the deferred equations to fail, and hence these

are determined not to be solutions. However, the binding of d to the values 2 or 4 will

cause all the deferred equations to succeed, and hence these are determined to be solutions.

EqL's support for inequality represents one of its strengths over Prolog, which cannot

define member or diff in this generality. Because of deferred evaluation, the order of the
two equations in the definition of diff does not affect the correctness of the program.

IV.2.2. Arithmetic primitives

Deferring the evaluation of arithmetic primitives also has some interesting uses. Consider
the conversion of centigrade to fahrenheit, expressed by the following rule:

f(c) -> 32 + 9*c div 5.

This rule can be used to convert centigrade to fahrenheit by a goal such as

eql> f(100).

It can also be used to find the centigrade for some particular fahrenheit, by a goal such as

eql> f(x) = 212.

To understand the process by which this equation is solved, it should noted that EqL

converts the above rule into the following program:

f(c) -> 32 + t2 where ti a 9*c; t2 a tl div 5.

The top-level goal, f x) = 212, results the following sequence of equations to be solved:

ti1 9*x; t2 = t div 5; 32 + t2 - 212.

13

EqL defers the first two equations, and solves the last equation to obtain the value of t2.
With this information ti is determined from the second equation, and finally x from the
first equation. Note that EqL will solve equations of the form c = a op b where op is an
arithmetic operator (+. -. *. div) and two of the three arguments (a, b, c) are known.
With this capability, the reader may verify that the interpreter will be able to find the x
such that

eql> fact(x) - 24.

where fact is the familiar factorial function, defined as:

fact(O) -> 1.
fact(n) -> n*fact(n-1) where greaterp(n.O) - true.

We also leave it to the reader to explain why, for example, fact(x) - 23 will fail to
terminate.

IV.3. Logical Variables

Much of the power in logic programming lies in its "logical variables." All variables in
EqL are logical variables in that they derive their values not by direct binding but by
the satisfaction of constraints. A classic example of logical variables is its use in defining
"difference lists", which permit list concatenation in constant-time. The following is the
EqL definition of difference-list concatenation.

dconc([xlt]. [tIy]) -> [xly].

Difference lists can be used to avoid the use of append in many places. Consider, for
example, the following inefficient definition of quick-sort.

qsort []) > [.
qsort ([p]) -> append(qsort(a). [plqsort(b)])

where [alb] = part(1. p).

part(i]. p) => [[I []].
part([hltJ. p) -> if p~h then [[hia] I b] else (a I [hib]]

where

[alb] - part(t, p).

Program IV.5 : Naive Quicksort

The above program is inefficient because it employs a linear-time append operation at each
stage of the sorting process. This inefficiency can be avoided by concatenating the sorted
lists in constant-time by representing them as difference lists, as follows.

sort(l) -> answer where [answer I []] = dsort(1).

14

"q

dsort([)) => [xix].
dx,.rt([p -1]) -> [aorta I tail] where

[a I b] - part(l.p);

[sorta I [pi sortb]] = dsort(a);

[sortb I tail] = dsort(b).

Program IV.6: Quicksort with difference lists

IV.4. Strings and User-defined Structures

Consider the following definition for non-destructively concatenating two strings:

cat'(, x) -> x.
cat([h:tJ. y) -> [h cat(t.y)].

Program IV.9 : String Concatenation

Using the above definition, we may determine the two portions, front and back, of some
string a, such that they are separated by some specific word w, as follows:

split(w, a) -> [front. back] where cat(front, cat(w. back)) a a.

User-defined constructors are declared before their use. They can be declared anywhere

in a file between the rules, e.g.

constructor: seq. fun.

where seq and fun are the names of the constructors. These two constructors may be used
in a program for performing type inference--seq and fun stand for sequence and function
respectively. For example, the following rules illustrate how these constructors may be
used to define the types of some primitive functions on sequences: Nil. Head. Tail, and

Ads.

type(Nil) -> seq(x).

type(Head) => fun(seq(x), x).

type(Tail) => fun(seq(x). seq(x)).

type(Adds) => fun(x. fun(seq(x). seq(x))).

V. Compilation of EqL

The implementation of EqL divides into two phases:

i. The compilation phaae: the source code is read in and transformed into a binary-tree

intermediate structure.

15

"JlWIXlu.S W-u t- Km- W-" MR Nip RU upw %IW u r rVrWVWjWV WV wr

ii. The interpretation phaae: the various execution stacks are set up, the query code

evaluated and the results printed.

In the remainder of this section, we describe the compilation phase. Compilation involves

lexical analysis, parsing and generation of intermediate structure. Lexical analysis and

parsing are done using the Unix tools Lex and Yacc. Two key transformations are per-

formed while generating the intermediate code: flattening and equation reordering. Below

we describe the two transformations.

V.1. Flattening %

To ensure left-most inner-most order of evaluation and to facilitate the temporary storage

of subexpression values prior to expression evaluation, the source code is flattened. The

flattening operation is simple: a subexpression e, which is not a term, is replaced by a

compiler-generated variable t, and a new equation t - * is added to the existing set of

equations. For example, consider the second definition of the inefficient version of qsort

in section IV.3.1:

qsort([p1l]) -> append(qsort(a). [plqsort(b)])
where [aib] = part(l, p).

After flattening it would become:
qsort ([pl i]) -> append(ti. [pl t2]

where [alb] - part(l. p);

tI - qsort(a);

t2 - qsort(b).

Here tI and t2 are the compiler-generated temporary names. Note that the order of

equations in flattened code reflects the desired evaluation order. As another example, the

query
1(x) + g(h(x)) 23.

after flattening becomes

tI - f(x);

xl - h(x);
t2 - g(xi);

tI + t2 - 23.

where tI. t2 and xl are compiler-generated variable names.

The reader might note that the flattened EqL code resembles the source code for

the comparable Prolog definition, in that the output variables of each Prolog predicate

correspond to our compiler generated names. These output variables in Prolog pose an

extra burden on the programmer, who has to manage them explicitly, and also lead to less

16

clear definitions. EqL does not bar the programmer from using such output variables, but
in most cases their use can be avoided.

V.2. Equation Re-ordering

Although EqL does not specify the order of solving equations, the interpreter we have
implemented solves equations sequentially. There are, however, two exceptions to this
general rule, referred to as compile-time and run-time equation re-ordering. We discuss
compile-time re-ordering in this section; run-time re-ordering is discussed in section VI.3.3.

In compile time re-ordering, an equation relating two terms is moved ahead of other
kinds of equations. This re-ordering usually makes operation applications less non-deterministic,
because unifying the two terms in such re-ordered equations usually results in variables
being bound, and operation applications with more bound variables tend to be less non-
deterministic.

Consider the query consisting of the equations

f (x) - term;

x - [hit].

where f is defined by n rules. Solving the second equation before the first binds x to [h I t].
With this binding for x, unifying f (x) against the various rules for f would very likely
eliminate many of them without evaluating their bodies.

V.3. Compiling if-then-else

For successful execution, the condition part of an if-then-else may reduce either to a boolean
or to an unbound variable (say x). In the former case, the then-part or the else-part is
evaluated depending upon the value of the boolean. In the latter case, the interpreter has
two non-deterministic choices: (i) bind x to true and return the value of the then-part
as the first solution, and (ii) bind x to false and return the value of the else-part as the
second solution.

As an aside, the reader may note that implementing if-then-else using the rules shown
below is not correct:

if-then-else(true, T. E) => T.
if-then-else(false.T. E) -> E.

These rules are not a correct implementation because they cause the if-then-else to be
strict in all arguments, instead of just the first argument.

In section VI.2.3 we describe the run-time support for executing an if-then-else ex-
pression. Below we illustrate the translated code for an if-then-else expression through an
example. Consider the operation solve in the N-queen. program.

17

solve(col. safelist. n) -> if eq(col.n+1) then safelist

else place ((col I row(n)], safelist, n).

This is transformed into:

solve(col. safelist. n) -> if bool then safelist

else (place ([col I tl]. safelist, n)

where ti - row(n))

wheret2 w n + 1;

bool - eq(col. t2).

where bool is the compiler-generated name for the condition part of the if-then-else, and t 1

and t2 are compiler-generated names for sub-expressions row(n) and n + I respectively.

V.4. Intermediate Code Structure

The intermediate code is organized as a binary tree and is stored in the static-area (im-
plemented as an array of cedli). Each node of the intermediate code tree uses exactly one
cell. A typical cell has the following information:

i. A tag which identifies the kind of node the cell stores, e.g. an atom, or a primitive
operator, or a rule header, etc. The tag of a node determines the operation to be
performed.

ii. A left pointer field which stores the pointer to the left subtree for an internal node
of the tree, or the actual value of the constant for a leaf node.

iii. A right pointer field which stores the pointer to the right subtree for an internal
node of the tree, or null for a leaf node.

iv. An info field which stores miscellaneous information, depending on the kind of node,

e.g., the hash value of a rule name for a rule header cell.

As an illustration, the intermediate code for the body of the second rule of the append
function (program 1ll.1) is shown in figure V.1.

The intermediate code of a rule is stored in the rule store, which is implemented as a
hash table, where the hash value of a rule is the sum of the ASCII value of the characters
in its name modulo 100. This value is computed and stored in the info field of the rule
header cell at compile time. Rule definitions falling in the same bucket are stored as linear
list, preserving the order they appear in the source program. Besides storing a pointer to
the body of the rule, the following information is also stored:

i. rule name

ii. rule arity

iii. number of variables in the body of the rule

iv. list of formal arguments.

18 I

Fvar y rj27

figure V.1.: Intermediate Code for append

VI. The Interpretation Phase

In this section we discuss equation solution. We also discuss the optimizations incorporated
in the interpreter for more efficient execution and quantify the improvements resulting from
them. Some of our terminology is borrowed from Prolog implementation descriptions in
[H84] and [WPP77].

VI.1. Overview

Without loss of generality, the top level of an EqL query may be assumed to be

term, a ezpression,;

termk - ezpreasionk;

The execution process consists of solving equations from the input query sequentially.
The appropriate action for solving an equation involves a case analysis of the 4 kinds of
equations defined in section II:

1. term1 = term2

2. term=f(e,...,en)
3. term = if p then el else e2

4. term = primitive

The EqL interpreter solves the equations using a fivestack execution model. The five
stacks are:

1. control stack The control stack records the locus of control during operation applica-
tions, and is similar to the activation record stack in conventional language implemen-
tations. Each operation application or if-then-else evaluation results in a frame
being pushed on the control stack.

2. variable stack Space for variables in a rule and the top level query is allocated on the
variable stack.

3. trail stack: The trail stack is used for recording the addresses of the variables whose
binding is to be undone upon backtracking.

4. equation-delay stack: This stack is needed to implement equation delaying. Delayed
equations are solved later when operands get bound.

5. equation-trail stack: The equation-trail stack is used for recording those delayed equa-
tions which have been solved, but need to be re-solved on backtracking.

Apart from these five run-time stacks the interpreter also accesses: (i) the static area,
where the intermediate code is stored, (ii) the I/0 buffer area, and (iii) the molecule heap
where molecules are allocated-we explain molecules later.

19

Note that control and data have been separated in the execution model by having
separate stacks for them. This enables reclaiming the control stack frame upon completion
of an operation application (succes exit), and also enables last equation optimization.

VI.2. Equation Solution

We now describe how each kind of equation is solved.

VI.2.1. Solution of term1 = term2

This kind of equation is solved by unifying term, and term2 . If the unification succeeds,
the equation is solved; otherwise backtracking is initiated. The variables in term1 and
terml are allocated space on the variable stack. The unification algorithm uses a small
local stack to traverse structures. The algorithm does not do an occurs checA, so a cyclic
structure may be produced during runtime. It is the programmer's responsibility to make
sure that programs do not generate cyclic structures during execution.

A term is either a constant (number or boolean), a variable, a structure, or a string.
Representation of constants and variables is discussed later. A structure is either a prim-
itive cons or a user defined constructor. In the next subsection we describe the represen-
tation of structures, using structure sharing [BM72].

VI.2.1.1. Structure Sharing: Constructors and Strings

As far as the implementation is concerned, there is only one built-in basic constructor
- cons. All other constructors defined by the user are represented in terms of this ba-
sic constructor. For example, the term tree(left, right) would be represented as
cons ('tree ', cons (left, right)) where 'tree' is an atom. Even the data type string
is implemented in terms of cons.

A cons-object is allocated using a molecule [WPP77. Similar to a closure, a molecule
is a pair of pointers: one to the skeleton code (called the code pointer) and the other to the
environment of the skeleton (called the environment pointer). The skeleton code consists
of the intermediate code residing on the static area. Thus, if we were to solve the equation
x - cons (h. t), where x is unbound, the variable cell for x on the variable stack would
be bound to a molecule as shown in figure VI.1.

A string is implemented as list of characters, e.g., the string "abc" would be repre-
sented as 'a'. 'b', 'c']; the null string 0 0 by the nul list [I. A marker bit is set in
each cell indicating whether it is a string cell or a list cell.

VI.2.2. Solution of term = f(el,..., en)

Solving this equation involves evaluating the operation application f(e,... ,en) and then
unifying the value returned with term. The first step in evaluation of f(ei,..., en) is to

20

WO "N ME

t ha
h cons____

variable stack var h va t

figure VIA1.: Binding a variable to a molecule

obtain the definition of f from the rule store. In general, there might be more than one

potential candidate, i.e. rules for f having the same arity. These candidates are tried one

by one in textual order. Let us call these candidates C1, C2, ... , Cn, in order. The one to

be tried first, C1, will have the general form:

Cl: f(t 1 ,...,t) -> expression where equations.

Suppose the actual parameters of f unify with the terms ti, ... , t,, then the invocation of

C1 by f leads to the following equations:
equations;

term = expression.

If the attempt to solve these equations succeeds, the original equation has been solved, and

a success exit is said to have been taken from C1. If, however, the attempt to solve them

fails, a failure exit is said to have been taken, and the original equation is retried with
the next candidate C2 for f. Note that these equations might result in more operation
applications. Of course, the attempt to solve them might also be non-terminating.

In the next two subsections, we first describe the two major data structures needed
in supporting operation applications: the control stack and the variable stack. We then

briefly describe the control algorithm.

VI.2.2.1. Control Stack

As the interpreter solves equations, it has to remember a variety of facts about the opera-

tions applications that have taken place so far. This information is stored in a frame in the
control stack. A typical control frame contains fields which have the following information

(name of the fields given in parentheses):

i. A pointer to the code to be executed by this frame (cp). This code is a list of equations.

ii. A pointer to the previous backtrack point (pb).

iii. A pointer to the trail stack (tp).

iv. Next candidate to be tried on failure (nc).

v. A pointer to the base of the area allocated to it on the variable stack, or the environ-

ment pointer (ep).

vi. A return point (rpt).

vii. A pointer to the parent frame, i.e. the frame which created this frame (pf).

viii. A pointer to the equation-delay stack (dsp).

A frame corresponding to an operation with multiple definitions is called a choice

point. The tp, nc and pb fields of a frame which is not a choice point are nil.

21

Figure VI.2 shows the state of control stack when the frame for the candidate C1,

from the example in the previous section, is pushed. In the figure the current call register

(cc) points to the frame currently executing. The last field (dsp) has been omitted in the

figure.

VI.2.2.2. The Variable Stack

The local variables of an operation application are allocated space on the variable stack.

A pointer to the base of this area is stored in the ep field of the operation's frame. Each
cell of the variable stack has two fields: one, to store the type of the datum, and the other,
to store its actual value. For atoms, numbers and booleans the datum field contains the
actual value of the constant. A variable-to-variable assignment, e.g., in the equation x -

v, is recorded by storing a pointer to w's cell in x's cell. Constructors (including strings)
are stored using the method of structure 8haring, as discussed earlier.

V"L2.2.3. Control Algorithm: Overview

To conclude our description of an operation application, we briefly summarize the control
algorithm. The algorithm has four phases:

i. operation invocation: The definition of the operation is retrieved from the rule store.
The definition of the next candidate of that operation is also retrieved, if there is
one. A frame is created for this definition, with all the required information put in
the various fields, and pushed on the control stack. The current call register (cc)
is updated to point to this new frame. Space is allocated for the variables of this
operation application on the variable stack, and execution is initiated.

i. operation ezecution: The first step in the execution of the operation is the unification
of its actual parameters with its formals. If the unification fails, backtracking takes
place. If it succeeds, the equations in the body of the operation are solved sequentially.
If any of these equations turn out to be unsatisfiable, backtracking takes place. These
equations might lead to more operation applications.

ii. operation ezit: Once all equations in the body of the operation have been solved, a
auccen exit is taken from its frame. This is done by making the cc register point to
the parent of the current frame and restarting the execution from the equation pointed
to by the return point (rpt field) of the current frame. If there are no choice points
above the frame pointed to by cc, all frames above it are popped, since they are no
longer needed. The variable bindings made by the deleted frames are preserved on the
variable stack. This is one reason for separating data and control in the interpreter.

iv. backtracking: When an equation turns out to be unsatisfiable, the interpreter has to
backtrack and retry the most recent call with an untried rule. A pointer to the most

22

, , , .i V7 . ' ' ' ' .
' .- ,-,, '-' /.. --. _

rpt C2 trail stack

Lm TI de

pflpb rpt Inc lepTtp Icp

variable stack
control stack

figure V1.2.: The Control Stack

Op 1

recent choice point is stored in a register called the most recent backtrack-point register
or the arb register. When mrb needs to be updated, its previous value is stored in
the previous backtrack-point (pb) field of the current frame. Thus the pb field in the

different choice points form an ordered chain of backtrack-points with the first one

being in mrb.

When failure occurs, control is transferred to the frame, say f, pointed to by the mrb.

All the frames above fare discarded. The urb is updated with the value of the previous
backtrack-point field of the frame f. The bindings of the variable recorded on the trail
stack between the trail-stack top and the tp field of f are undone, and the trail-stack
top is set to value of the tp field of f The next candidate to be tried is retrieved using

the nc field of f. Frame f is modified to store the information for the new definition
and the computation is restarted.

V1.2.3. Solution of term = if-then-else

The interpreter executes the if-then-else like a user defined operation application, except
that only the first argument, corresponding to the predicate condition, is evaluated in a
call-by-value fashion. As we saw earlier, if the predicate condition is an expression it gets
flattened out and replaced by a variable. We will refer to this variable introduced as the
predicate variable. At the time of evaluation of the if-then-else, the predicate variable
can be in one of the three valid states: unbound, bound to the constant true, or bound to
the constant false. If the predicate variable is bound to something else, the if-then-else
fails.

The cases when the predicate variable is bound to true or false are similar. We
therefore explain just the true case: When the predicate variable is bound to true, the
then-part is executed. The interpreter treats the then-part as an anonymous operation
application. Both the then-part and the else-part have the general form:

ezpression where equations

resembling the body of a operation. Thus, a frame gets pushed on the control stack after
the various fields have been set up. This frame is not a choice point, and hence no backtrack
information is required to be stored in it. It also does not get allocated any space on the
variable stack, because the if-then-else shares all its variables with the operation it
appears in. Thus the environment pointer of the frame for the then-part is the same as the
environment pointer of its parent. Once the frame has been set up and pushed, execution
continues normally.

When the predicate variable is unbound the if-then-else evaluates to more than
one values. Thus, an equation

z if x then 10 else if y then 20 else 30.

23

would yield the following 3 solutions.
x - true
y _

z" 10;

x = false
y = true

z = 20;

x - false
y = false

z - 30;

no solution

Implementing the if-then-else with unbound predicate variable is more involved.

Although the frame for then-part shares the variable space with its parent frame, it has a
separate pointer pointing into the trail-stack because only those variable which got bound
as a result of the execution of the then-part need be unbound upon failure. Note that,
in an if-then-else with an unbound predicate variable, the frame for the then-part can
always be overwritten with that of the else-part. Thus, the execution of an if-then-else
never requires more than a single frame. The advantages of treating the if-then-else
evaluation as a pseudo operation-application are:

i. the control mechanism remains simple and uniform;

ii. it is possible to provide full backtracking on the unbound predicate variable with no

extra cost, and

iii. because the if-then-else is often deterministic the corresponding frame is not a
choice-point. This aids last equation optimization (LEO), discussed later.

The mechanism described above can handle arbitrarily nested if-then-else.

VI.2.4. Solution of term = primitive

To solve an equation with a primitive strict operator, the arguments of the operator are
first evaluated, the operation is then applied to arguments, and the result is then unified
with term. If unification fails backtracking takes place. If one of the operands is not

bound, the equation is delayed, If term is a number, or a variable bound to a number,
and the operator is arithmetic (+. -. *. div) with only one operand unbound, then the
interpreter computes the value of its other operand and binds it. Equation delaying and
solution of arithmetic equations is discussed below.

24

p

VI.2.4.1. Equation Delaying
To implement equation delaying the interpreter maintains a stack called the equation delay

stack. When an equation is found to have a primitive operator with unbound operands, a

pointer to its code is stored in the equation delay stack. The dap field in the control frame

stores the top of the delay stack whenever a choice point is pushed. On backtracking to

this choice point, the top of the delay stack is restored to the value in this field.

Every time a success exit is taken, the interpreter tries to solve all equations on the

delay stack. If a delayed equation is solved and belongs to a frame lying below the mrb,
a pointer to this equation is also recorded on the equation trail stack. This information

is recorded so that upon backtracking this equation can be marked as still unsolved, and

re-solved later with correct bindings.

VI.2.4.2. Solving Arithmetic Equations

Because of flattening, all arithmetic operations occur in equations of the form:

a = b op c, or

bopc - a

where each a, b. c is either a variable or number, and op is *. -. * or dLv.

When an arithmetic expression with an unbound operand is found, the term on the

other side of that equation is examined. If it is a number, or a variable bound to a number,

then tL e value of the unbound operand is computed and stored in the variable cell of that

operand on the variable stack.

Note that equations that have only one occurence of an unbound variable can be solved

immediately. Equations of the kind x + y = 20, where x and y are unbound, would be

delayed using the mechanism described in the previous section. It can be solved as soon as

one of the variable gets boundL Solving such equations, rather than delaying them, makes

the interpreter more efficient.

V1.3. Optimizations

So far we have described the core of our interpreter. Now we will discuss some optimiza-

tions incorporated in our interpreter. These optimizations are rule-indexing, last-equation

optimization, and run-time equation re-ordering. These optimizations lead to considerable

efficiency in execution space and time as indicated by our experiments.

V1.3.1. Last Equation Optimization

It is not necessary to delay the reclamation of a frame on the control stack until a success

exit is taken. It is possible to reclaim a frame, subject to certain conditions, at the time its

25

Y V,. -. . . _,, ' -.-.- , .. ' , '-., ,,.,.' .' ."," . , .,'.-- '% e ,,' '' '

last equation is being solved. The Last Equation Optimization (LEO) is similar to the Last
Call Optimization (LCO) in Prolog implementations and the Tail Recursive Optimization
(TRO) in Lisp implementations.

Functional language implementation have fewer opportunities to do TRO due to their

expression nesting. Consider the second rule in the functional definition of append-

append([]. y) -> y.
append([hItJ, y) -> [hi append(t. y)].

Since cons is at the outermost level, it is not possible to apply TRO to the recursive call
on append. On the other hand LCO can be applied to the recursive call to append in the

Prolog definition for append given below:

append([J. Y. Y).
append([HIT]. Y. [lIZ) :- append(T. Y. Z).

This is an advantage of the relational style of programming over the functional style -

more opportunities for LCO exist.

LEO in EqL is as powerful as LCO in Prolog. That is, LEO would be performed
during the execution of EqL code where ever LCO would be performed in the execution
of the equivalent Prolog code. This is achieved through compile-time as* well as run-time

equation reordering. We illustrate this point by considering the above rules for append,
and the goal

append(U. 2], [3. 4]) - an&.

During execution, after the second rule has been matched, this goal would be transformed

into:

append(ti. yl) = zl;

cons(hi. zi) - ans.

Note that zi appears due to compile time flattening of append. Due to equation re-

ordering, the second equation would be moved before the first which then triggers a LEO.

The conditions for an equation to qualify for LEO are:

i. the equation should be the last to be solved in that operation code, and

ii. the called operation should not be a choice point.

Both these conditions are fairly easy to determine at runtime. In principle, the condi-
tion above can be further relaxed, and it is possible to do a LEO when the caller is not a
choice point and the callee is. However, this requires extra information to be maintained

on the control stack and hence we did not incorporate it in our interpreter. Note that it
is the separation of control and data which enables the callee frame (which is not a choice
point) to overwrite the calling frame even when the former is a backtrack point.

26

LEO not only saves space but also time. Space is reduced because frames get deleted
from the control stack as soon as they are no longer needed. Programs run faster because
when the called frame overwrites the calling frame only 50% of the fields need updating;
others (such as the parent frame pointer, return pointer, etc.) remain the same and do not
require modification. Thus, overwriting a frame is a much cheaper operation than pushing
a new one. Later, we give some statistics showing the improvement in speed due to LEO.

VI.3.2. Rule-indexing

In order to preserve variable bindings during an operation application, a frame needs to be
set up on the control stack before unifying the actuals and the formals. Very frequently,
this unification fails and the time spent in setting up this frame goes wasted.

Rule-indexing avoids this wasted effort, and is similar to Prolog's clause-indexing
[WPP77. The first actual argument of the operation application is unified with the first
formal argument of the operation definition before the execution stacks are set up. The uni-
fication algorithm used here is only an approximation to the actual unification algorithm.
If rule-indexing succeeds, the execution stacks are set up and true unification is performed.
If rule-indexing fails, the next definition is considered in a similar fashion. Even though
rule-indexing performs only an approximate unification, our experiments'show that it cuts
down considerably on the number of potential candidates for an operation application.
Since it is performed before the frame for the operation is pushed, it leads to LEO being
applied more often, thus multiplying the savings in time and space.

The approximate unification algorithm used for rule-indexing is as follows:

i. A constant term unifies with a constant term if they are identical.

ii. An unbound variable unifies with anything.

iii. Two structures unify only if their first components unify (in the approximate sense).

iv. An empty list does not unify with a cons structure.

For example, [x. y], if present as the first formal argument would unify with [1, 2. 3)
in the approximate sense, though it wouldn't in the true sense.

VI.3.3. Runtime Equation Re-ordering

Run-time equation re-ordering is needed because the new equation that is created during
operation application could relate two terms. To illustrate, consider a rule

f(...) -> ezpression where equations

and a query equation
f(...)= term.

27

Assuming the actuals and formals of f unify, at runtime this equation reduces via the

above rule to:
equation.s;
ezpression = term.

Since the equation expression = term is generated at run-time, re-ordering is necessary

if expression turns out to be a term. Runtime equation reordering leads to a greater

number of LEOs, and also helps avoid non-termination in some cases. To illustrate this

point, consider the query

append(x, y) - [1. 2].

This goal would yield three solutions. Without run-time equation re-ordering, how-

ever, non-termination occurs after the last solution is reported. This non-terminating

computation is caused due to the generation of the equations:

append(-..) = -.

U = cons(.......)

where - denotes an unbound variable.

As a result of runtime re-ordering, the equation [I - cons(.......) is solved first,

thus causing termination with failure. The interpreter then reports to -the user that no

more solutions exist. The reordering also forces the recursive call to append in the second
rule to be in the last equation, enabling LEO. As a result of LEO, the entire query gets

solved in a single frame.

VI.3.4. Experimental Results

The effect of last-equation optimization and rule-indexing may be illustrated from the

following typical test cases.

List append

append(]. x) -> x.

append((hIt], y) -> Ch I append(ty)].

Naive reverse

reverse([]) => (J.
reverse ([hit])-> append(reverse(t). [h]).

Association lists

assoc([]. x) -> 'notfound'.

assoc([[xlv]lt]. x) => [x I v].

assoc([[ylvlIt]. x) -> assoc(t. x) where eq(x. y) - false.

The table below summarizes the run-times for these programs. The numbers in the

table stand for SUN-3 cpu seconds. The last two digits after the name in the first column

28

of the table indicate the length of the list on which the program was run. The column
labeled BASIC lists the timings for the version of the interpreter with no optimizations,
the one labeled RI for the version with rule-indexing, and the last for the version with
rule-indexing and LEO.

Program BASIC RI RI+LEO
app3O 0.045 0.030 0.010
app6o 0.100 0.070 0.030
rev30 0.700 0.550 0.410
rev60 2.840 2.300 1.610
assoc30 0.070 0.065 0.060

The improvements from the optimizations should be obvious from the table. We observed
similar improvements with other programs as well. Note that the time taken to traverse
30 elements of an association list is considerably more than the time taken to append a
30-element list to another list. This supports the observation that structure sharing favors
data construction over data access [M801. (Note that printing time for the resulting lists
is not included in the above timings.)

VII. Conclusions

Although EqL supports functional programming more directly than logic programming
(because of its functional syntax), we hope it is clear from the examples that many logic
programming paradigms are also readily supported. In fact any pure Prolog program can
be directly converted into an EqL program [JS86]. EqL programs are often clearer than
equivalent Prolog programs because function composition supplants the need for "output
variables" in Prolog programs (see definition of naive reverse, for example). EqL's if-then-
else corresponds to a well-structured use of Prolog's cut, and its use also leads to simpler
formulations in many cases. EqL supports arithmetic, relational and boolean primitives,
and delays any equation with these primitives until sufficient information becomes avail-
able. Other useful features in the language are strings and user-defined constructors.

The development of EqL was inspired by several recents efforts: O'Donnell first in-
troduced the term 'equational programming' to refer to a style of functional programming
with equations fHO82, 085]. You and Subrahmanyam extended this language for logic
programming [YS86 by permitting equations to be solved only at the top-level goal. EqL
further extends this approach and permits equations at the top-level as well as at interme-
diate levels. Note that EqL rules are more general in that variables on the right-side of a
rule need not appear on the left-side--this generality is, in fact, needed to attain the full
expressiveness of Horn logic.

29

-,

X*v r W V I- rip rum ri MN MA

The operational strategy of EqL is related to narrowing in term-rewriting systems.

Unrestricted narrowing has excessive computational requirements because many reduc-
tions and narrowings are possible at each step, and these are not readily located-the

complexity of a narrowing implementation can be seen from [JD86]. Lazy narrowing re-

stricts the matching to the outermost term, but, unlike ordinary lazy evaluation [HM76],
argument expressions may have to be re-narrowed for each different rule for an operation
[RS5-because the extent of (lazy) narrowing could depend on the left-hand side of a rule.

In contrast, because of its call-by-value semantics, EqL avoids such re-evaluation; EqL's
equation-solving procedure may be viewed as a form of innermost narrowing.

The EqL interpreter divides into two phases: compilation and interpretation. Com-
pilation involves generation of binary-tree intermediate code, accompanied by flattening

and equation re-ordering transformations. The interpretation phase solves the different
forms of equations using five stacks, each with fixed size entries. From our experiments,
we found that last equation optimization and rule indexing improve runtime performance

considerably. Note that because of the complete separation of the control and variable
stacks, the variable stack shrinks only during backtracking. Garbage collection is therefore

needed when no more space is left on it. Our current implementation does not support

garbage collection yet.

For the sake of storage efficiency, our sequential implementation searches for solutions
depth-first with backtracking, similar to Prolog implementations. Although depth-first

search does sacrifice completene. in theory, we have not found this to be a serious limi-
tation in practice. Ultimately performance for such a language must be realized through

parallelism-which would also facilitate a complete implementation. Because sequential
machines are still in widespread use, we felt it was worthwhile investigating efficient sequen-
tial implementations. The availability of a sequential implementation has been extremely

valuable to us in experimenting with this new programming paradigm.

We completed Version 1.0 of the interpreter in May 1987, and have successfully run

several non-trivial programs using it. The EqL interpreter runs at about half the speed of
the C-Prolog interpreter for standard benchmark programs such as naive reverse. By com-

piling EqL programs to WAM-like code [W831, comparable performance with Prolog can be
expected. We nevertheless hope we have demonstrated that the elegance of functional no-

tation (composition, if-then-else) and the expressiveness of logic (non-determinism, ability
to declare constraints) may be combined (via equation solving) to yield a practical declar-

ative language.

References

[BM721 R. S. Boyer and J. S. Moore, "The sharing of structure in theorem proving

30

programs,* In Machine Intelligence 7, B. Meltzer and D. Michie (eds.), 1972,
pp. 101-116.

[CM81] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag,
New York, 1981.

[DP85] N. Dershowitz and D. A. Plaisted, "Applicative Programming cum Logic
Programming," In 1985 5pmp. on Logic Programming, Boston, 1985, pp. 54-
66.

[F85] L. Fribourg, "SLOG: A Logic Programming Language Interpreter based on
Clausal Superposition and Rewriting,* In 1985 Symp. on Logic Programming,
pp. 172-184, Boston, 1985.

[GM84] J. A. Goguen and J. Meseguer, "Equality, Types, Modules, and (Why Not?)
Generics for Logic Programming," J. Logic Prog. 2 (1984) pp. 179--210.

[H841 C.J. Hogger, "Introduction to Logic Programmming,* Academic Press, 1984.

[HHT82] A. Hansson, S. Haridi, and S.-A. Ti-niund, "Properties of a Logic Program-
ming Language," In Logic Programming, Ed. K. L. Clark and S.-A. Tirnund,
Academic Press, 1982, pp. 267-280.

[HM76] P. Henderson and J. H. Morris, "A Lazy Evaluator." In Third A CM POPL,

1976, pp. 95-103.

[HO82] C. M. Hoffman and M. J. O'Donnell, "Programming with Equations," A CM
TOPLAS 4, No. 1, pp. 83-112, January 1982.

[JD861 A. Josephson and N. Dershowitz, "An Implementation of Narrowing: the
RITE Way," In IEEE Sinp. on Logic Prog., Salt Lake City, September 1986,
pp. 187-197.

[J87] B. Jayaraman, "Semantics of EqL," To appear in IEEE Trans. on Software
Engg., 1987.

[JG87] B. Jayaraman and G. Gupta, "EqL User's Guide," TR 87-010, Dept. of Comp.
Science, UNC - Chapel Hill, May 1987, 30 pages.

[JL871 J. Jaffar, J.-L. Lassez, "Constraint Logic Programming," In 14th ACM POPL,
pp. 111-119, Munich, West Germany, 1987.

[JS86] B. Jayaraman and F.S.K. Silbermann, "Equations, Sets, and Reduction Se-
mantics for Functional and Logic Programming," In 1986 ACM Symposium
on LISP and Functional Programming, pp. 320-331, Boston, 1986.

[L851 G. Lindstrom, "Functional Programming and the Logical Variable," In 12th
A CM POPL, New Orleans, Jan 1985, pp. 266-280.

31

1)

[M8O C.S. Mellish, 'An alternative to structure-sharing in the implementation of

a Prolog interpreter," D.A.I. Research Paper No. 150, Univ. of Edinburgh,

1980.

[085] M. J. O'Donnell, "Equational Logic as a Programming Language," M.I.T.

Press, 1985.

IR851 U. S. Reddy, "Narrowing as the Operational Semantics of Functional Lan-

guages," In 1985 Symp. on Logic Programming, Boston, 1985, pp. 138-151.

[RS821 J. A. Robinson and E. E. Sibert, *LOGLISP: Motivation, Design, and Im-

plementation," In Logic Programming, Ed. K. L. Clark and S.-A. Tirnlund,

Academic Press, 1982, pp. 299-313.

[W831 D. H. D. Warren, *An Abstract Prolog Instruction Set," Tech. Note 309, SRI

International, Menlo Park, October 1983.

[WPP77 D. H. D. Warren, F. Pereira, and L. M. Pereira, "Prolog: the Language and Its

Implementation Compared with LISP," SIGPLAN Notices 12, No. 8 (1977)

pp. 109-115.

[YS86 J-H. You and P. A. Subrahmanyam, "Equational Logic Programming: an

Extension to Equational Programming," In 13th A CM POPL, St. Petersburg,
1986, pp. 209-218.

32

FlI

V13ow'VP" q

